Package: HDMAADMM 0.1.0
HDMAADMM: ADMM for High-Dimensional Mediation Models
We use the Alternating Direction Method of Multipliers (ADMM) for parameter estimation in high-dimensional, single-modality mediation models. To improve the sensitivity and specificity of estimated mediation effects, we offer the sure independence screening (SIS) function for dimension reduction. The available penalty options include Lasso, Elastic Net, Pathway Lasso, and Network-constrained Penalty. The methods employed in the package are based on Boyd, S., Parikh, N., Chu, E., Peleato, B., & Eckstein, J. (2011). <doi:10.1561/2200000016>, Fan, J., & Lv, J. (2008) <doi:10.1111/j.1467-9868.2008.00674.x>, Li, C., & Li, H. (2008) <doi:10.1093/bioinformatics/btn081>, Tibshirani, R. (1996) <doi:10.1111/j.2517-6161.1996.tb02080.x>, Zhao, Y., & Luo, X. (2022) <doi:10.4310/21-sii673>, and Zou, H., & Hastie, T. (2005) <doi:10.1111/j.1467-9868.2005.00503.x>.
Authors:
HDMAADMM_0.1.0.tar.gz
HDMAADMM_0.1.0.zip(r-4.5)HDMAADMM_0.1.0.zip(r-4.4)HDMAADMM_0.1.0.zip(r-4.3)
HDMAADMM_0.1.0.tgz(r-4.4-x86_64)HDMAADMM_0.1.0.tgz(r-4.4-arm64)HDMAADMM_0.1.0.tgz(r-4.3-x86_64)HDMAADMM_0.1.0.tgz(r-4.3-arm64)
HDMAADMM_0.1.0.tar.gz(r-4.5-noble)HDMAADMM_0.1.0.tar.gz(r-4.4-noble)
HDMAADMM_0.1.0.tgz(r-4.4-emscripten)HDMAADMM_0.1.0.tgz(r-4.3-emscripten)
HDMAADMM.pdf |HDMAADMM.html✨
HDMAADMM/json (API)
# Install 'HDMAADMM' in R: |
install.packages('HDMAADMM', repos = c('https://psyen0824.r-universe.dev', 'https://cloud.r-project.org')) |
Bug tracker:https://github.com/psyen0824/hdmaadmm/issues
Last updated 3 months agofrom:5ab01e8924. Checks:OK: 1 ERROR: 8. Indexed: yes.
Target | Result | Date |
---|---|---|
Doc / Vignettes | OK | Nov 01 2024 |
R-4.5-win-x86_64 | ERROR | Nov 01 2024 |
R-4.5-linux-x86_64 | ERROR | Nov 01 2024 |
R-4.4-win-x86_64 | ERROR | Nov 01 2024 |
R-4.4-mac-x86_64 | ERROR | Nov 01 2024 |
R-4.4-mac-aarch64 | ERROR | Nov 01 2024 |
R-4.3-win-x86_64 | ERROR | Nov 01 2024 |
R-4.3-mac-x86_64 | ERROR | Nov 01 2024 |
R-4.3-mac-aarch64 | ERROR | Nov 01 2024 |
Exports:cvSingleModalityAdmmgenerateLaplacianMatrixmodalityMediationDataGensingleModalityAdmmweightToLaplacian
Readme and manuals
Help Manual
Help page | Topics |
---|---|
'HDMAADMM' Package | HDMAADMM-package HDMAADMM |
Cross Validation for High-dimensional Single Mediation Models | cvSingleModalityAdmm |
Fitted Response of SingleModalityAdmm Fits | fitted.SingleModalityAdmm |
Function Generate Laplacian Matrix | generateLaplacianMatrix |
Data Generation for High-Dimensional Mediation Model | modalityMediationDataGen |
Predict Method for SingleModalityAdmm Fits | predict.SingleModalityAdmm |
High-dimensional Single Modality Mediation Models | singleModalityAdmm |
Helper function to convert Weight Matrix to Laplacian Matrix | weightToLaplacian |